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Spinor fields are considered in the framework of the nonsymmetric Kaluza-Klein 
theory and the nonsymmetric Jordan-Thiry theory (in non-Abelian case). Dipole 
moments for fermions of value 10 -31 and pseudomass-like terms are found. 

1. I N T R O D U C T I O N  

We deal with spinor fields in the f ramework of the nonsymmetric 
Kaluza-Klein  theory and the nonsymmetric Jordan-Thiry  theory. To do 
this we introduce on P, an (n +4)-dimensional  Kaluza-Klein  manifold [in 
the nonsymmetric  case, see Kalinowski (1983a-c, 1984a)], a spinor field 
belonging to the fundamental  representation of a group S O ( l ,  n +3).  

Using a minimal coupling scheme from Moffat 's theory of  gravitation 
(see Kalinowski, 1986), we introduce for this spinor field a new kind of 
gauge derivative as in Kalinowski (1981a, b, 1982, 1983d, 1984b, 1987). 
Simultaneously, we use the dimensional reduction procedure from 
Kalinowski (1982, 1984h) for this spinor field. 

In the Lagrangian for this field we get new terms, which we interpret 
as the interaction of dipole moments with the Yang-Mills field and 
pseudomass-like terms. In the case dim G = n = 2 1 +  1, we can interpret 
some of  these terms as the interaction of  the dipole electric moment  of  the 
fermion with the electromagnetic field. Thus we get PC-breaking, as in 
Thirring (1972), Kalinowski (1981a, 1984b, 1987). 

This paper  is organized as follows. In Section 2 we describe some 
elements of  the nonsymmetric Kaluza-Klein  theory and the nonsymmetric 
Jordan-Thi ry  theory. In Section 3 we introduce a dimensional reduction 
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procedure.  In Section 4 we describe minimal coupl ing between Dirac 's  field 
and geometry (gravity) in the Moffat theory o f  gravitation. In Section 5 we 
introduce a new gauge derivative for a spinor  field �9 and generalize minimal 
coupl ing scheme. We get new terms in the lagrangian. In the Appendix  we 
deal with elements of  Clifford algebras that we use in the paper.  

2. THE NONSYMMETRIC KALUZA-KLEIN THEORY AND THE 
NONSYMMETRIC JORDAN-THIRY THEORY 

Let P be the principal fiber bundle  with the structural group G, over 
space-time E with a project ion ~r, and let us define on this bundle  a 
connect ion w. Let us suppose  that G is semisimple and that its Lie algebra 
g has a real representat ion such that Tr[(Xa)  2] is not  equal to zero for  every 
a. Here Tr is u n d e r s t o o d  in the sense o f  the representat ion space o f  the Lie 
algebra g, and Xa are generators o f  g. On  space-time E we define a 
nonsymmetr ic  metric tensor  such that 

g ~  = g ( ~  ) + g [ ~  ] (1) 

g~og3"O = go~gt33" = 8 ~ (2) 

where the order  o f  indices is important.  We define on E two connect ions  
o3~ and W~: 

o~ e r ~ 0 ,  W~ (3) = = Wt33"O 

,~/~ -~ 2 ~ i ~ /  (4) = 0)/3 - - ~ 0 ~  

where 

i f ' =  Wv03" = 1/2( - ~ W.,~v)O W .  yo_ _ - o- -3" 

For  the connect ion o5~ we suppose the following condit ion:  

L3g~+~_ = L3g~ - g~Qe3"(F) = 0, Q~, (F)  = 0 (5) 

where L3 is the exterior covariant  derivative with respect to to 0- " and Qt~3"(F)-~ - 
is the torsion o f  o3~. Thus, we have on space-time E all quantities f rom 
Moffat 's  theory  o f  gravitation (Moffat, 1979, 1981, 1982). The exterior 

- - A  covariant  derivative with respect to W~, we will denote  Dw. N o w  we define 
on P the natural frame 

0a = (rr*(ff"), 0 ~ = Aw~), A = const (6) 

is a connect ion on P. The two-form of  curvature of  
a 

where oJ = w Xa 
connect ion w is 

= hor  dw ~ ~ = 1 /2H~ , ,OAO Xa  (7) 
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12 obeys the structural Cartan equation 

f~ = do) + 1/2[o9, to] (8) 

Bianchi's identity for to is 

hor dUt = 0 (9) 

Horizontality is understood in the sense of the connection to on P. The 
map e : E  D U-~ P, so that e o a t - - id  is called a cross section. From the 
physical point of  view it means choosing a gauge. Thus, 

e* w = e*(ogaX,~) '~ -" = AgO Xa (10) 

e'12 = e*(O"X, , )  = 1/2F~,,O~O'~Xa (11) 

where 
a a a a b c Fg~ = O~A~ - a ~ A g  + CbcA~A~ (12) 

X, ,  a = 1, 2 , . . . ,  n = dim G, are generators of  the Lie algebra of  the group 
G and 

[Xa, Xb] = C~bXc (13) 

A covariant derivation on P with respect to 02, d guage is defined as follows: 

g u a g e  

d �9 = h o r  d ~  (14) 

This derivation is called "gauge"  derivation, where �9 is, for example, a 
spinor field on P. 

It is convenient to introduce the following notations. Capital Latin 
indices A, B, C run over 1, 2, 3 , 4 , . . . ,  n + 4 ,  n = d i m  G; lowercase Greek 
indices a,/3, y =  1 ,2 ,3 ,4 ;  and lowercase Latin indices a,b,  c, d = 
5 , 6 , . . . ,  n + 4 .  A bar over 0 a and o9~ indicates that both quantities are 
defined on E. According to Kalinowski (1983a, b), we introduce on P the 
natural nonsymmetric tensor 

( g~_0__'~ (15) 
)/AB~- k 0 [ lo~] 

where 

lob = hab + lZ Kob (16) 

with hob = CadCcbC a a Killing tensor on G, and Kab = C~,b Tr[(Xc)2]; /~ is a 
dimensionless constant [see Kalinowski (1983a, b) for more details]. In the 
ease of  the nonsymmetrie Jordan-Thiry  theory we define on P the following 
object: 
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where p is the scalar field on E [see Kalinowski (1983c, 1984a) for more 
details]. 

We suppose that det(/~b)# 0. Now we define on P a connection w A 
such that 

DTA+ B = D T A B  -- Y A D Q D c (  F ) O C = 0  (18) 

where 

o,~=r~c0 ~ 

D is the exterior covariant derivative with respect to the connection cob a 
and Q~c(F) is the tensor of  torsion for the connection co A. In the case of 
the nonsymmetric Kaluza-Klein  theory we get 

, -~  ~ ~ d b 2ALt3~ 0 A (77"  (O013)--~Aldbg L ~ O  ! ~ v 
OJ B = 1 ot d d "/ 

\ ~Albdgr  (2/A)a3;/  (19) 

where 

is a tensor on P such that 

and 

d L~,~ = - L~3~, (20) 

T #  d / z y  d - -  lacg.~g L ~  + l~ag~g  Lt3 ~ - 21~ag~g~'VHd~v 

" a  c 
"a FbcO 

(21) 

(22) 

" d + " d 1~21.tiC,be ldbFac ladFcb = (23) 
~ d  ~ d  F,e = - F  ca (24) 

~L=0 (25) 

[see Kalinowski (1983a, b) for more details]. In the case of  the nonsymmetric 
Jordan-Thiry  theory we get 

" * - ~ 1 2 c~a d b 
~- (wt3)-~A p labg L~t~O � 8 9  "-  

A 1 2 a13 d d 7 = (1/p)g~13g p.~,6bO+c2/x)W~ (26) o913 ~Ap Ibdg (2Hv ~ -  Lr~)  0 ~(~r) ~ ~ ~~ 

L -P~'~%,A ~~ 

where ff(~r is the inverse tensor for g (~) ,  

g(~)ff(" ')  = 8~ (27) 

[For more details see Kalinowski (1983c, 1984a).] In the Kaluza-Klein 
theory and in the Jordan-Thiry  theory A = 2 G 1 / 2 / c  2, where G is the gravita- 
tional constant and e is the velocity of  light in vacuum. This condition 
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originates from the consistency between the equation in the theory and the 
Einstein equation (Kaluza, 1921; Lichnerowicz, 1955a; Raysk, 1965; Kerner, 
1968; Cho, 1975; Kalinowski, 1983e). In the Jordan-Thiry theory there 
exists the effective gravitational constant 

Gefr = Gp 3 (28) 

and p plays the role of the gravitational "constant," which now depends 
on a point of E (Kalinowski, 1983c, 1984a). Now we define the dual Cartan 
base on E. 

Let ~1234-~" (-det g)~/2; r is a Levi-Civita symbol and 

~ = ~fft3 ^ fir ^ f f ~ r  ~ = 1 /4 f f  ~ ^ 7/~ (29) 

For details concerning elements of the geometry mentioned here see Kobay- 
ashi and Nomizu (1963), Lichnerowicz (1955b), Trautman (1970). 

3. DIMENSIONAL REDUCTION 

Let us consider the group SO(l, n +3) and its fundamental (complex) 
representation of dimension K = 4 - 2  En/2~, where [n/2]=l for n=21 or 
2l+1, 

W(g)~(X) = DF (g)XIt(g-lX) (30) 

X @ M  (l'n+3), g~SO(1, n+3) 

SO(1, n+3) acts linearly in M O'n+3)  [(n+4)-dimensional Minkowski 
space]. The Lorentz group SO(I, 3)c SO(I, n+3). Thus, after restriction 
of g to the subgroup SO(l, 3) we obtain a decomposition of D F according 
to (Barut and Raczka, 1977) 

OF]so(1,3)(m) =- L(A) ~ L(A), A c SO(l, 3) (31) 
[ n/2] times 

where 

L(A) = D(1/2"~ D(~ 

is the Dirac representation of SO(I, 3). The decomposition (31) for a spinor 
has the form 

�9 1so(1,3~ = ~'2 (32) 

where g'i, i = 1, 2 , . . . ,  2 f~/27, are spinors belonging to the Dirac representa- 
tion (L= D(I/2"~176 Thus, due to the decomposition (32), we get a 
tower of 1/2-spin fermions. 
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More precisely, we deal with representations of  Spin(l,  n + 3 )  and 
Spin(l,  3) ~ SL(2, C). 

Let us turn to the manifold P. It is a metric manifold (P, 7) with a 
metric tensor 7. At every point p ~ P we have a tangent space Tp(P)~- 
M ~1"n+3). Let ~ :  P ~ C  K (K  = 2  ~"/21) be a spinor field on P at every point 
p ~ P belonging to fundamental  representation D v of group SO(l ,  n +3).  

For spinor field �9 we suppose the following action of group G: 

~(Pgl) = o-(g~)~(P) (33) 

where p = (x, g) c P; g, gl c G. Here o- is a representation of group G in 
4.2[n/ZLdimensional complex space. 

I f  we take a section e: E-~ P, we get a spinor field ~(e(x ) )  on the 
manifold E (space-time). This means that at every point x ~ E we have, 
after restriction to S0(1,  3), the spinor ~l  SO~l, 3) and for it the decomposit ion 
(32) is valid. Thus 

 l(X) \ 
(e*~)[so~l,a)(x)= qJz!X) ~ (34) 

~2[n "/2](x)/1 
Spinor fields ~ i (x ) ,  i = 1, 2 , . . . ,  2 E"/z~, are spinor fields at every point x ~ E 
belonging to the Dirac representation L=D~~176 Such a pro- 
cedure we will call the dimensional reduction for a spinor field. In this way 
we get a tower of  Dirac spinor fields on E. The following scheme symbolizes 
it: 

e restriction 1~2 
~x r ' e * a ~  > e * ~ I t l s o ( l , 3 ) =  �9 (35) 

section of P frOmto SO(I,so(I,3)n+3) [ - - /  

~02 2 

In Kalinowski (1981a, b, 1987) we dealt with (in a similar context) the 
five-dimensional (electromagnetic) case [G  = U(1), n = 1]. Thus, we have 
the de Sitter group SO(l,  4) and we deal with the spinor �9 belonging to 
the fundamental  representation of group Spin(l ,  4)-~ Sp(4). But for this 
case we have dim D F = dim DVlso~,3) and after dimensional reduction we 
get only one spinor field on E. The procedure (35) explains the construction 
given in Kalinowski (1981a, b, 1987). This procedure shows how to obtain 
a set of  Dirac spinor fields ~0i on E if one has a spinor field on P (with a 
special dependence of higher group dimensions). But from the physical 
point of view the opposite case is more interesting. We have several spinor 
fields on E with which we connect physical fermion fields. From time to 
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time it is possible to build a tower from these physical spinor fields. Some 
attempts have been made in constructing such towers (Rayski, 1977; Furlan 
and Raczka, 1980; Pati, 1980; Kim, 1987). Thus, from a physical point of 
view it would be interesting to describe physical fermions as a spinor field 
on P belonging to a fundamental representation of SO(l, n + 3) [Spin(l, n + 
3)]. This might be of help in understanding the generations of fermions. 
Now it is difficult to proceed because a group G [gauge group for GUT 
(Kim, 1987)] is not well established and one suspects that many new 
generations are possible. We know from an asymptotic freedom argument 
in QCD that the number of generations may be smaller than 9 (greater 
than 2). 

3. DIRAC LAGRANGIAN IN MOFFAT'S THEORY 
OF GRAVITATION 

In Kalinowski (1986) we found the minimal coupling scheme for the 
Dirac field in the Moffat theory of gravitation. We get the Lagrangian 

L( W, ~b ) : �89 Ol ̂  b~b + b~b ^ hp ) + mcnf~b (36) 

where l = y ~  and 

i n e ~ / a \  2 - i n e F ( a ) 2 - -  
l~4,:DwtP----3--~pl ) Wtp,  D~=D~g,+---~- ~ W~b (37) 

where a is a coupling constant for fermion current in the Moffat theory 
(Moffat, 1979, 1981, 1982), Ip~ is the Planck length Ip~ = (G/hc) u2 ~ -  10 .33 cm, 
n is a nonzero integer, and e2F = 1; D~ is the exterior covariant derivative 

- - A  with respect to the connection W..  In Kalinowski (1986) we proved that 
the Lagrangian (36) is equal to 

)( ] L(W'~b)=-2- [  01^ / 3 0 -  3 I~b + /3~+ 3 IV~ ^10 

where 

+ m c ~ O  (38) 

1 ~ =  - , ~  /3 - -  - / 3 - , ~  dO+o)po',~tp, DO-dtp-Oo-~w ~ 

and cr~ satisfies the following properties: 

~r~ = 0 

2 [ o %  ~ ]  ~ ~ ,,K ~ ~ ~ �9 r/ O'~a 

(39) 

(40) 

(41) 

(42) 
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y'*  are ordinary Dirac matrices satisfying a conventional relationship, 

{yr., y~} = 2rfl,. (43) 

~ ~ y~* ~ ~ - or*' ( 4 4 )  r/~A~ = ~ ,  = r/~13yt~ , ~r ~*~ = r/ ~r~, cr~A - r/~, .A 

The contragradient spinor q.7 is defined by 

q7 = 0+/3, /3+ =/3 (45) 

where 

and 

y"+ =/3y~'/3-' (46) 

~r.~ + = -/3~r~/3 -~ (47) 

The superscript plus sign denotes Hermitian conjugation. The spinor 0 was 
defined in Kalinowski (1986) as a 0-form of Z-type: 

Y~: GL(4, R) --> GL(4, C) (48) 
[or OLt(4, R)] 

and 

~ a  = O~ ~/ OA ~IA;=~; ( 4 9 )  

[see Kalinowski (1986) for more details]. It is easy to see that 

,~  =k[r  ~, ~,~] (50) 

satisfies all properties (40)-(42). In Kalinowski (1986) we proved that the 
Lagrangian (36) or (38) has U(1)F-gauge invariance, which is connected 
to the compactification of the dilatation subgroup R+ of GL+(4, R) = R+| 
SL(4, R), where 

GL+(4, R) = {A ~ GL(4, R),  det A > 0} 
(51) 

SL( 4, R) = { A ~ GL( 4, R ), det A = 1} 

R+ = {e p, p c E}, where p = ln(det A) and the R+-local gauge group acts in 
the following way on O, t~, and I~: 

IV-+ I~/" = ~I/+ d& 

e x p [ , ~ c  ~ ln(detA)  0 (52) 

e x p [ - , ~ c  ~ ln(detA)  q~ 
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5. D I R A C  E Q U A T I O N  IN T H E  N O N S Y M M E T R I C  

K A L U Z A - K L E I N  T H E O R Y  A N D  IN T H E  N O N S Y M M E T R I C  
J O R D A N - T H I R Y  T H E O R Y  

In this section we deal with a generalization of the Dirac equation on 
the manifold P. We introduce several kinds of derivatives and use them to 
get a generalization of the Dirac equation. 

Let F A, A = 1, 2 , . . . ,  n +4, be a representation of Clifford algebra for 
SO(l ,  n +3) acting in the space representation of D z, i.e., F A ~ C(1, n +3) 
(see Appendix) 

{FA, FB}=2~ AB, F A c ~ ( C  K) 
(53) 

K = 4 "  2 E~/2~, [n/2] = I 

where 

gAB = diag(-1, -1,  -1,  1, - 1 , . . .  -1)  
;• 

Let B be a matrix such that 

F~+=BF~B -1, B ~ ( C  K) (54) 

The superscript plus sign denotes Hermitian conjugation and we let 

~ =aIr+B (55) 

We perform an infinitesimal change of frame 0 a 

0 t A =  o A - ~ 6 0  A =  oA--EABoB (56) 

If the spinor field �9 corresponds to 0 A and ~ '  to 0 A', then we have 

~ ,  ~ + ~  A kS 
= =~klI--EBO"a~xt 

(57) 
= 'qt -..I- '~.l-" O"A E B 

where 

CrA~"B~' = OE~/OAu]A~=8 7, A (58) 

~: GL(n +4, R)--> G L ( 4 . 2  E"/21, C) (59) 

is a homomorphism of Lie groups and &a B is the differential of ~ at the unit 
element. ~-~ satisfies the following properties, similar to ~r~ [see (40)-(42)]: 

,~A 
O" a = 0 ( 6 0 )  

218A B,o.C]*o = ~ O A 8  - *~D--  BAD OAO'C--gAcO" "1-6C0" a gBDO'Ac (61) 

[~A B, F c ] = 1/2[~aCF u - gCUFa] (62) 
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where 

~ A B ~ B C  = ~ C ,  ~rAB = ~ A C  ~rB 

(63) 
,~ _ A c  F A = g A B F B  ' O'AB = gcBO'A  

We can use the following representation of ~AB: 

Sa B = �89 r B ] (64) 

Let us consider a covariant derivation of spinor fields �9 and ~ on P: 

D X P = d ~  AAB . . . . . . . .  B A + to BtrA~ , D ~  = (65) a "4t --  '~I, S O'A to B 

with respect to the linear connection w A from the nonsymmetric Kaluza- 
Klein theory [Eq. (19)] or from the nonsymmetric Jordan-Thiry theory [see 
Eq. (26)]. Now we introduce derivative D, i.e., "gauge" derivatives of a 
new kind [as in Kalinowski (1981a, b, 1982, 1983d, 1984b, 1987). These 
derivatives may be treated as a generalization of minimal coupling between 
spinor and gauge (Yang-Mills) fields on P: 

D ~  = hor D ~ ,  D ~  = hor D ~  (66) 

(horizontality is understood in the sense of the connection to on P). Using 
(19) and (26), one gets 

D ~  =/3W + 1,X [ L ; , r a r  r + Ibdg~r (2Hrt3d _ Ldvtor,~rb]~o./  
(67) 

D ~ =  D ~  ' - ~ ~ d L % ) F ~ F b ] o  ~ -~Aq~[L~FaF +lbdg~(2Hv~--  

in the nonsymmetric Kaluza-Klein theory and 

O~'  = 13V +~p2A [ L ~ F o F  ~ + Ibdg'~t~(2ud~ -- L~)VoVb],~0 �9 
(68) 

D ~  = D C p - I  A p 2 ~ [  L~vF~Ft~ + ~t~ d d b ~, Ibdg ( 2 H v e - L v ~ ) F . F  ]0 

in the nonsymmetric Jordan-Thiry theory, where 

D ~  = h o r / 5 ~ ,  /)~t = h o r / ) ~  

The derivative /5 is a covariant derivative with respect to both o3~ and 
"gauge" at once. It introduces an interaction between Yang-Mills and 
gravitational fields with spinor, in the classical way already known in general 
relativity or in Einstein-Cartan theory (Trautman, 1973). Now let us turn 
to the Lagrangian (38) and lift it on the manifold P. In order to do this, 
we have to pass from /5 to D, from ~0, ~ to q~, ~ ,  and from 3/~ to F A. In 
such a case the Dirac Lagrangian takes the form 

+ r n c r l ~  (69) 
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where 1 = F"B. .  After some algebra one gets 

W, oj)+ilp 'q]L;~d-~3`ra ~ _  ~ d d --  "*3' b ~ =  L(~,  Ibdg [(2H3`~-L~t3)~o-.~ ) ~] 'q 
0~ s L 

�9 Ipl  
- t 8% qlbegE~lH~@Fb~P~ (70) 

where lp, is Planck's length, q is the elementary charge, a, is a dimensionless 
coupling constant of the Yang-Mills field, and 

L('F, IV, ~o) describes the interaction between the spinor field and geometry 
in the nonsymmetric theory of gravitation and Yang-Mills field as in 
Kalinowski (1986, 1987) for the electromagnetic field. 

In the case of the nonsymmetric Jordan-Thiry theory we get 

5e = L(~, W, o~) 

Ol s 

i l p l  2 1  _ [ a f t ]  r r d  ~ T , ~ b ~ t ,  
I J t ' l ~ b d g  l'-/oe/3 ~ F I  a ' r l  (72) 

~iOl s 

So we see that we get additional terms. They are 

i l p l  a - " ~ 3 `  ~ d d - - 3 `  b q[Lt33`~o ragr--lbdg (2H3`t~-Lrr ~ ]  (73) 
0/s 

and 

/pl glbdgE~r (74) 
8c~ s 

If one performs the dimensional reduction (35) for L (~ ,  W,, w), one easily 
gets (see Appendix) 

d i m e n s i o n a l  2 [ n / 2 ]  
L(,~, W, ~o) , E L(~0i, W, A e) (75) 

reduc t ion  i = 1 

Thus, one obtains the interaction between spinor fields ~i, i = 1, 2 , . . . ,  2 [n/2], 
and gravitation and the Yang-Mills field in the already known classical 
way. It is worth noticing that all fermions Oi have the same mass rn. Now 
we turn to new terms (73) and (74). In Kalinowski (1981a, 1987) one deals 



570 Kalinowski 

with the five-dimensional (electromagnetic) case and one interprets the first 
new term as an interaction of electromagnetic field with a dipole electric 
moment  of  the fermion of value (lpl/~,/-d)q. Now we deal with Yang-Mills 
fields and should work with a useful concrete representation of F A. We will 
consider the cases n--21 and n =21+ 1 separately. If  we suppose that the 
group G is a gauge group which unifies electromagnetic, weak, and strong 
interactions, then G has a subgroup U(1)el corresponding to electromagnetic 
interactions after breaking the symmetry. Let dim G = 21 + 1 and let a param- 
eter of  the electromagnetic subgroup U(1)e~ correspond to A = n + 4 = 21 + 5. 
Then we turn to the first additional term (73) and perform the dimensional 
reduction for d = n + 4 = 21 + 5 and b = a = n + 4 = 21 + 5. We get 

ilpl 2[n /2 ]  [ - T 2 1 + 5 , ~ f 1 3 ' ~  ,I, - -  ~c~/3(OILg21+5 21+5 -- 3" 5 
- - q  Y. u~-~3" Wi ~ ,vSmi ,5 k-~,13"/3-L3"t~ )~Jio.ct'y~i] (76) 
OLs i=l=l  

= r21+5-H,3" is the second u2z+5 F~3" (electromagnetic field) and ~3" - where ,~ ~v 
tensor of  the strength of  the electromagnetic field (Kalinowski, 1983a, b). 

Thus, we get for all fermions a dipole electric moment  of  order 10 -31 c m  

(Kalinowski, 1987). I f  dim G = 2/, then this term is forbidden and we have 
no dipole electric moment  of the fermion. 

Let us pass to the second additional term (74) and perform the 
dimensional reduction procedure for d -- b = 21 + 5. We get 

/pl _ _ [ ~ ] ~ _ g 2 1 + 5  2[n /2 ]  

8as ~g 1, ~t3 ~=~Y" qT~ys~b~ (77) 

i.e., we get a pseudomass-like term for every fermion ~0~ (Kalinowski, 1987). 
It is possible, as in Kalinowski (1984b), to introduce discrete transfor- 

mations on P, i.e., space reflection II, time reversal T, charge reflection C, 
and combined transformations IIC, 0 = I I C T .  In the case of  the Jordan-  
Thiry theory the only difference will be a factor of  p2 in formulas (73), (74), 
(76), and (77). 

APPENDIX 

In this appendix we deal with Clifford algebra C(1, n +3)  (Atiyah et 
al., 1964; Cartan, 1966). Due to decomposition rules for C(1, n + 3 ) ,  we 
write down a useful representation for F A in terms of y~. It is well known 
that any Clifford algebra can be decomposed into a tensor product of  the 
four elementary Clifford algebras (Atiyah et al., 1964; Cartan, 1966): 

C(0, 1) = C (complex numbers) 

C(1, 0) = R O R  (A1) 

C(0, 2) = H = quaternions 
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We have 

C(1, n +3)  = C(0, 2) |  C 0 ,  n + 1) (A2) 

Because we deal with dimensional reduction to space-time E, we define the 
Clifford algebra C(1, 3) and we easily get 

[[.123 ) 
C(1, n+3)=~,,=[[ 1 |  |  

= (C~OiJ| H )  | C(1, 3 ) (A3) 

It is well known that either 

C(1, n+3)=C(1, n+4) (lit n +3 =2l, l~N~) (A4) 

o r  

C(1, n+2)=C(1, n+3) (iff n + 3  =21+1 ,  IcN~) 

Let y .  ~ ~7(C4),/x = 1, 2, 3, 4, be Dirac matrices obeying conventional rela- 
tions 

(%,, 3;~) = 2~%~ (A5) 

rl~. = diag(-1,  -1 ,  -1 ,  +1) 
(A6) 

2 
3;5 = 3;13;23;33;4, 3;5 = --1 

and let ~ri e ~(C2), i = 1, 2, 3, be Pauli matrices obeying conventional rela- 
tions as well: 

{cr,, ~rj} = 2a,3 (A7) 

[~r,, 9 ]  = e ukO'k (A8) 

We introduce also the following notations: ~ c ~ ( C  2) is a 2 x 2 unit matrix 
and J ~ ~ ( C  4) is a 4 x 4 unit matrix. Thus, one performs on the decomposi- 
tion (A3) and easily gets 

[[./23 \ 
F" = ~7"| i=~1 | (A9) 

o r  (o 
Ft" = 

3;~" 

(A10) 



572 KaUnowski 

For A ~ / z  one gets (in the case n = 21) 

~-~ p-2 ( 1~0~ 1 

F2P+Z=i~r174 i~[1Q~ ~)0"2(~ t i=l~, (~O'i 
where 4 < 2 p +  l < 2 p +  2<-n + 4 =  21+ 2. 

In the case n = 21 we define also the matrix 

n+4 ( ~ i  1 ) F2/+5 Fn+5=ii3(t+l) I~ F A = ( - / S ) Q  (~)O'1 = 
A=I i= 

or (o. 
Fn-t-5 ~ " �9 

`/5" 

where n = 21, I c N~ .  
I f  n = 2 1 + 1 ,  we have I ' a = F a ,  A =  1 , 2 , . . . ,  21+4:  

0 .  .y5 
~n+4 = [,2t+5 = 

-/56 0 

It is easy to check that  

(F2t+5) 2 = - 1 ,  {~A, FZl+5} = 0 for 

_ [~/21 \ 
B =  B |  i=~--1 (~0"1) ' 

( A l l )  

(A12) 

(A13) 

(A14) 

A ~ 2 1 + 5  (A15) 

y~+ =/~T~'B -1 (A16) 
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